Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
نویسندگان
چکیده
منابع مشابه
Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
Hydraulic failure is one of the main causes of tree mortality in conditions of severe drought. Resistance to cavitation is known to be strongly related to drought tolerance and species survival in conifers, but the threshold of water-stress-induced embolism leading to catastrophic xylem dysfunction in angiosperms has been little studied. We investigated the link between drought tolerance, survi...
متن کاملA method for measuring hydraulic conductivity and embolism in xylem
Hydraulic conductivity of the xylem is computed as the quotient of mass fiow rate and pressure gradient. Measurements on excised plant stems can be difficult to interpret because of timedependent reductions in fiow rate, and because of variable degrees of embolism. Using Acer saccharum Marsh, stems, we found that certain perfusing solutions including dilute fixatives (e.g. 0.05% formaldehyde) a...
متن کاملOutside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration1[CC-BY]
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095 (C.S., S.V.T., G.P.J., M.K.B., L.S.); Department of Biology, Utah State University, Logan, Utah 84322 (C.S.); Department of Viticulture and Enology, University of California, Davis, California 95616 (C.A., A.J.M.); School of Forestry and Environmental Studies, Yale University, New Haven, Con...
متن کاملOutside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration.
Leaf hydraulic supply is crucial to maintaining open stomata for CO2 capture and plant growth. During drought-induced dehydration, the leaf hydraulic conductance (Kleaf) declines, which contributes to stomatal closure and, eventually, to leaf death. Previous studies have tended to attribute the decline of Kleaf to embolism in the leaf vein xylem. We visualized at high resolution and quantified ...
متن کاملWinter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees.
Xylem vessels of Prunus persica Batsch (peach) and Juglans regia L. (walnut) are vulnerable to frost-induced embolism. In peach, xylem embolism increased progressively over the winter, reaching a maximum of 85% loss of hydraulic conductivity (PLC) in early March. Over winter, PLC in walnut approached 100%, but the degree of xylem embolism varied during the winter, reflecting the ability of waln...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tree Physiology
سال: 2013
ISSN: 0829-318X,1758-4469
DOI: 10.1093/treephys/tpt030